# data留学生程序代做、代写Matlab课程设计程序

 data留学生程序代做、代写Matlab课程设计程序 Homework 2 All rights reserved. Problem 1 Consider the polynomial interpolation for the following data points x 0 2 3 4 y 7 11 28 63 (a). Write down the linear system in matrix form for solving the coecients ai (i = 0, ··· , n) of the polynomial pn(x). (b). Use the Lagrange interpolation process to obtain a polynomial to approximate these data points. Problem 2 The Polynomial p(x) = x4 x3 + x2 x + 1 has the values shown. x -2 -1 0 1 2 3 p(x) 31 5 1 1 11 61 Find a polynomial q(x) that takes these values (you don’t need expand it): x -2 -1 0 1 2 3 q(x) 31 5 1 1 11 30 (Hint: This can be done with little work. Try the Lagrange form.) Problem 3 data留学生作业代做、代写Matlab课程设计作业 Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3) and (2, 2). Find y if the coecient of x3 in P3(x) is 6. Matlab Problem 1 Ccompute the numerical derivative of f(x) = xex on [0, 1] by using the formula below. Write a matlab code to test the convergence order numerically (Please hand in your code). Matlab Problem 2 Consider the polynomial interpolation On the interval [1, 1] with Two types of f(x): f1(x) = cos(x), f2(x) = 1 1 + x2 . Write a matlab script for computing the error of polynomial interpolations of fi(x), and fill Errn for di↵erent polynomial interpolations in the following table. The error of polynomial interpolation is defined as En = kpn(x) f(x)k where x is a Vector representing the uniform grid points on [1, 1]. Hint: Using the Element-wise division ./ and the element-wise power .^. What to hand in? Your script file to get the results 1 c Homework 2 All rights reserved. n f1(x) f2(x) Naive En Lagrange En Naive En Lagrange En 如有需要，请加QQ：99515681 或邮箱：99515681@qq.com 微信：codehelp
免责声明：珠穆朗玛网对于有关本网站的任何内容、信息或广告，不声明或保证其正确性或可靠性，用户自行承担使用网站信息发布内容的真假风险。